package main import "math" // haversin(θ) function func hsin(theta float64) float64 { return math.Pow(math.Sin(theta/2), 2) } // Distance function returns the distance (in meters) between two points of // a given longitude and latitude relatively accurately (using a spherical // approximation of the Earth) through the Haversin Distance Formula for // great arc distance on a sphere with accuracy for small distances // // point coordinates are supplied in degrees and converted into rad. in the func // // distance returned is METERS!!!!!! // http://en.wikipedia.org/wiki/Haversine_formula func Distance(lat1, lon1, lat2, lon2 float64) float64 { // convert to radians // must cast radius as float to multiply later var la1, lo1, la2, lo2, r float64 la1 = lat1 * math.Pi / 180 lo1 = lon1 * math.Pi / 180 la2 = lat2 * math.Pi / 180 lo2 = lon2 * math.Pi / 180 r = 6378100 // Earth radius in METERS // calculate h := hsin(la2-la1) + math.Cos(la1)*math.Cos(la2)*hsin(lo2-lo1) return 2 * r * math.Asin(math.Sqrt(h)) }