| @@ -0,0 +1,34 @@ | |||
| package main | |||
| import "math" | |||
| // haversin(θ) function | |||
| func hsin(theta float64) float64 { | |||
| return math.Pow(math.Sin(theta/2), 2) | |||
| } | |||
| // Distance function returns the distance (in meters) between two points of | |||
| // a given longitude and latitude relatively accurately (using a spherical | |||
| // approximation of the Earth) through the Haversin Distance Formula for | |||
| // great arc distance on a sphere with accuracy for small distances | |||
| // | |||
| // point coordinates are supplied in degrees and converted into rad. in the func | |||
| // | |||
| // distance returned is METERS!!!!!! | |||
| // http://en.wikipedia.org/wiki/Haversine_formula | |||
| func Distance(lat1, lon1, lat2, lon2 float64) float64 { | |||
| // convert to radians | |||
| // must cast radius as float to multiply later | |||
| var la1, lo1, la2, lo2, r float64 | |||
| la1 = lat1 * math.Pi / 180 | |||
| lo1 = lon1 * math.Pi / 180 | |||
| la2 = lat2 * math.Pi / 180 | |||
| lo2 = lon2 * math.Pi / 180 | |||
| r = 6378100 // Earth radius in METERS | |||
| // calculate | |||
| h := hsin(la2-la1) + math.Cos(la1)*math.Cos(la2)*hsin(lo2-lo1) | |||
| return 2 * r * math.Asin(math.Sqrt(h)) | |||
| } | |||