| package main | |||||
| import "math" | |||||
| // haversin(θ) function | |||||
| func hsin(theta float64) float64 { | |||||
| return math.Pow(math.Sin(theta/2), 2) | |||||
| } | |||||
| // Distance function returns the distance (in meters) between two points of | |||||
| // a given longitude and latitude relatively accurately (using a spherical | |||||
| // approximation of the Earth) through the Haversin Distance Formula for | |||||
| // great arc distance on a sphere with accuracy for small distances | |||||
| // | |||||
| // point coordinates are supplied in degrees and converted into rad. in the func | |||||
| // | |||||
| // distance returned is METERS!!!!!! | |||||
| // http://en.wikipedia.org/wiki/Haversine_formula | |||||
| func Distance(lat1, lon1, lat2, lon2 float64) float64 { | |||||
| // convert to radians | |||||
| // must cast radius as float to multiply later | |||||
| var la1, lo1, la2, lo2, r float64 | |||||
| la1 = lat1 * math.Pi / 180 | |||||
| lo1 = lon1 * math.Pi / 180 | |||||
| la2 = lat2 * math.Pi / 180 | |||||
| lo2 = lon2 * math.Pi / 180 | |||||
| r = 6378100 // Earth radius in METERS | |||||
| // calculate | |||||
| h := hsin(la2-la1) + math.Cos(la1)*math.Cos(la2)*hsin(lo2-lo1) | |||||
| return 2 * r * math.Asin(math.Sqrt(h)) | |||||
| } |